
Brandon’s Sphinx Tutorial
Release 2013.0

Brandon Rhodes

January 21, 2016

Contents

1 Notes on Using Sphinx 2
1.1 Starting a Sphinx project . 2
1.2 Sphinx layout . 3
1.3 Hints . 3
1.4 Helping autodoc find your package . 4
1.5 Deployment . 5

2 RST Quick Reference 7

3 Sphinx Quick Reference 8

4 Writing ‘api.rst’ 10

5 Writing ‘tutorial.rst’ 12

6 Writing ‘guide.rst’ 13

7 Example: tutorial.rst — The trianglelib tutorial 14

8 Example: guide.rst — The trianglelib guide 15
8.1 Special triangles . 15
8.2 Triangle dimensions . 15
8.3 Valid triangles . 16

9 Example: api.rst — The trianglelib API reference 17
9.1 The “shape” module . 17
9.2 The “utils” module . 18

Python Module Index 19

i

Brandon’s Sphinx Tutorial, Release 2013.0

PyCon 2013
San Jose, California
Thursday morning
March 14th

9:00pm - 10:30pm First Half of Tutorial
Break (refreshments served)

10:50pm - 12:20pm Conclusion of Tutorial

Welcome to my Sphinx tutorial, which is now in its fourth year at PyCon. Sphinx has come a long
way since this tutorial was first offered back on a cold February day in 2010, when the most recent
version available was 0.6.4. Sphinx has now reached 1.1.3, and I have worked to keep this tutorial
up to date with all of the most recent features in Sphinx. I hope you enjoy it with me!

Contents 1

Chapter 1

Notes on Using Sphinx

Here are some quick notes on running Sphinx successfully. Each topic will be elaborated upon at
the right point during our class.

1.1 Starting a Sphinx project

The wonder of a properly designed framework is that it begins by positioning you at a working
starting point instead of leaving you to wander endlessly through a README that, after dozens of
steps, leaves you guessing which step you did improperly to have wound up with a broken install.

Sphinx gets you started with sphinx-quickstart. Here is how a quick-start session will look,
paying attention only to its prompts and how you should respond (which is mostly by pressing
Return over and over), when you use it to create a new project:

$ sphinx-quickstart
Welcome to the Sphinx quickstart utility...

> Root path for the documentation [.]: doc
> Separate source and build directories (y/N) [n]:
> Name prefix for templates and static dir [_]:
> Project name: trianglelib
> Author name(s): Brandon
> Project version: 1.0
> Project release [1.0]:
> Source file suffix [.rst]: .rst
> Name of your master document (without suffix) [index]: index
> Do you want to use the epub builder (y/N) [n]: n
> autodoc: automatically insert docstrings ... (y/N) [n]: y
> doctest: automatically test code snippets ... (y/N) [n]: y
> intersphinx: ... (y/N) [n]:
> todo: ... (y/N) [n]:
> coverage: ... (y/N) [n]:
> pngmath: ... (y/N) [n]:
> mathjax: ... (y/N) [n]: y
> ifconfig: ... (y/N) [n]:
> viewcode: include links to the source code ... (y/N) [n]: y
> Create Makefile? (Y/n) [y]: y
> Create Windows command file? (Y/n) [y]: y

2

Brandon’s Sphinx Tutorial, Release 2013.0

1.2 Sphinx layout

After you have succeeded in quick-starting, your project should look something like this, if we
imagine that you created your doc Sphinx directory right next to your trianglelib Python
package directory:

your-project/
|-- doc/
| |-- Makefile
| |-- _build/
| |-- _static/
| |-- _templates/
| |-- conf.py
| |-- index.rst
| `-- make.bat
|-- setup.py
`-- trianglelib/

|-- __init__.py
|-- shape.py
`-- utils.py

The index.rst is your initial documentation file, whose table of contents you will expand as
you add additional .rst files to this directory.

1.3 Hints

Here are a few adjustments you can make to a Sphinx project once you have its files laid out and
set up.

• Sphinx is sensitive to indentation — blocks and code snippets end when the indentation level
returns to its previous level — but Sphinx is usually forgiving about how far exactly you
indent; you can generally choose freely how far to indent, so long as you are then consistent
about sticking to that level. Sphinx is much like Python in this regard, but without a strong
community preference for a particular number of spaces per indentation level.

• Build your documentation by changing directory to the directory that contains the
Makefile and then running:

make html

• You can view the documentation by running Python’s built-in web server, open-
ing http://localhost:8000/ in your web browser, and navigating into the
_build/html directory:

python -m SimpleHTTPServer

1.2. Sphinx layout 3

Brandon’s Sphinx Tutorial, Release 2013.0

• Feel free to create directories beneath doc for groups of .rst files that do not belong
at the top level. Simply refer to such files in your index.rst table of contents using a
dir/filename syntax so that Sphinx can find them.

• You can get rid of the line that says “Contents:” in index.rst since it causes a bizarre
blank page in the PDF output.

• To make prettier PDFs, remove the whole section in index.rst named “Indices and ta-
bles.”

• Do not despair if you realize later that you need an extension that you failed to answer
y to during the quick-start; simply go into the conf.py and add the extension to the
extensions list and make any other changes the extension needs. You can always sim-
ply re-run the quick start to make a new project with the extension active, then run diff
between your own Makefile and the new one to see what the differences are.

• You can use Semantic Newlines to be friendly to your version control.

• Here is a small diagram of how I think of documentation, which we will use as a rough guide
during class:

developer developer
new user writing new code reading code

| | |
v v v

tutorial <--> topical guides <--> API reference

1.4 Helping autodoc find your package

In order to run autodoc directives on your package, the Python interpreter that is running Sphinx
for you needs to be able to import your package. You can test whether Python can see your package
by testing whether this command returns without error:

python -c 'import your_package'

There are three general approaches to making your package available to autodoc.

1. Have your package’s top-level directory sit right next to your Sphinx Makefile and
conf.py and all of your top-level RST text files. When you type make inside this di-
rectory and it goes off and runs Sphinx, your package will be visible because it is sitting in
the current working directory.

The downside: you usually want your package sitting out by itself in your source distribution,
not mixed in or sitting beneath its own documentation.

2. Set the Python path environment variable to point to the directory containing your package.
You can do this with an export statement that you run before you start building your
documentation:

1.4. Helping autodoc find your package 4

Brandon’s Sphinx Tutorial, Release 2013.0

export PYTHONPATH=/home/brandon/trianglelib

Or you can set the Python path only for the build command itself, leaving your shell variable
settings pristine:

PYTHONPATH=/home/brandon/triangle-project make html

The downside: You either have to remember to manually set this environment variable each
time you run Sphinx, or you have to create and maintain a small shell script as a separate file
that will remember to set the path and run Sphinx.

3. If you have installed Sphinx inside a virtual environment — which is a really, really great
idea — then you can install your under-development package there too by using the pip
--editable flag:

pip install -e /home/brandon/triangle-project

Once you have run this command, the Python running inside of this virtual environment is
permanently able to import trianglelib without further ado. (Assuming that you do
not remove the project from your filesystem!)

The downside: When you check the project out on to a fresh machine, you either have to
always remember to manually set up the virtual environment the right way, or you have to
keep a shell script in the repository that sets it up for you each time. (Even though that is a
good idea anyway.)

4. Assuming that your package and its documentation are part of the same source repository
— as they should be — they will always have the same relative position on the filesystem.
In this case, you can simply edit the Sphinx conf.py so that its sys.path configuration
entry points at the relative position of your package:

sys.path.append(os.path.abspath('../triangle-project'))

All upside: this is, in my opinion, the best approach, as it always goes along for the ride with
your repository, and works immediately upon repository check-out without having to rely on
any intermediate setup steps.

1.5 Deployment

We will discuss this topic in depth, but here are some links for your further reference when the
class is complete:

• It should be possible to export the contents of _build/html to any file-system-based web
service and serve it as static content.

• You can package the documentation in a ZIP file and upload it using the “edit” page for your
Python package, and it will appear at the URL:

1.5. Deployment 5

Brandon’s Sphinx Tutorial, Release 2013.0

http://pythonhosted.org/<project-name>

Detailed instructions for this procedure live at:

http://pythonhosted.org/

• The powerful and popular Read the Docs service lets you configure your GitHub reposi-
tory so that every time you push a new version of your software, the documentation gets
automatically rebuilt and made available at:

https://readthedocs.org/projects/<project-name>/

Read the Docs also supports custom host names if you want your documentation to appear
beneath your own project sub-domain. More information is available at:

https://readthedocs.org/

• Creating a PDF is nearly as simple as running:

make html

Except that you have to have the Latex typesetting system installed, which is a daunting task
on many platforms and operating systems. On my own Ubuntu Linux laptops, I need to
install several packages before even attempting it:

texlive-fonts-recommended
texlive-latex-recommended
texlive-latex-extra

• See the Sphinx documentation for several other supported formats!

• We will tackle simple theming tasks during the tutorial’s second half; remember that the
PyEphem project is a good living example of how to completely replace the Sphinx HTML
themes with one of your own, so that you are essentially using Sphinx to build your own web
site.

1.5. Deployment 6

http://pythonhosted.org
http://pythonhosted.org/
https://readthedocs.org/projects
https://readthedocs.org/

Chapter 2

RST Quick Reference

Underline titles with punctuation
=================================

For subtitles, switch to another punctuation mark

Italic **bold** ``name`` ``function()`` ``expression = 3 + 3``
`Hyperlink <http://en.wikipedia.org/wiki/Hyperlink>`_ `Link`_

.. _Link: http://en.wikipedia.org/wiki/Link_(The_Legend_of_Zelda)

.. image:: images/python-logo.png

.. A comment block starts with two periods, can continue indented.

A paragraph is one or more lines of un-indented text, separated
from the material above and below by blank lines.

“Block quotes look like paragraphs, but are indented with
one or more spaces.”

| Because of the pipe characters, this will become one line,
| And this will become another line, like in poetry.

term
Definition for the “term”, indented beneath it.

another term
And its definition; any of these definitions can continue on for
several lines by -- you guessed it! -- being similarly indented.

* Each item in a list starts with an asterisk (or “1.”, “a.”, etc).

* List items can go on for several lines as long as you remember to
keep the rest of the list item indented.

Code blocks are introduced by a double-colon and are indented::

import docutils
print help(docutils)

>>> print 'But doctests start with ">>>" and need no indentation.'

7

Chapter 3

Sphinx Quick Reference

.. note::

Your note should consist of one or more paragraphs, all indented
so that they clearly belong to the note and not to the text or
directive that follows.

Many other directives are also supported, including: warning,
versionadded, versionchanged, seealso, deprecated, rubric,
centered, hlist, glossary, productionlist.

.. code-block:: c

/* Or say "highlight::" once to set the language for all of the
code blocks that follow it. Options include ":linenos:",
":linenothreshold:", and ":emphasize-lines: 1,2,3". */

char s[] = "You can also say 'python', 'ruby', ..., or 'guess'!";

.. literalinclude:: example.py
:lines: 10-20
:emphasize-lines: 15,16

.. module:: httplib

.. class:: Request

Zero or more paragraphs of introductory material for the class.

.. method:: send()

Description of the send() method.

.. attribute:: url

Description of the url attribute.

Many more members are possible than just method and attribute,
and non-Python languages are supported too; see the Sphinx docs
for more possibilities!

8

Brandon’s Sphinx Tutorial, Release 2013.0

.. testcode::

print 'The doctest extension supports code without >>> prompts!'

.. testoutput::

The doctest extension supports code without >>> prompts!

.. _custom-label:

.. index:: single: paragraph, targeted paragraph, indexed paragraph

This paragraph can be targeted with :ref:`custom-label`, and will also
be the :index:`target` of several index entries!

.. index:: pair: copper, wire

This paragraph will be listed in the index under both “wire, copper”
and “copper, wire.” See the Sphinx documentation for even more complex
ways of building index entries.

Many kinds of cross-reference can be used inside of a paragraph:

:ref:`custom-label` :class:`~module.class`
:doc:`quick-sphinx` :method:`~module.class.method()`
:mod:`module` :attr: `~module.class.attribute`

(See the Sphinx “Inline Markup” chapter for MANY more examples!)

9

Chapter 4

Writing ‘api.rst’

Your first assignment is to create your own api.rst document whose output looks just like the
chapter “The trianglelib API reference” at the end of this handout!

Approach this task as three smaller steps. For your first try, just use three plain autodoc directives
to generate your entire chapter from the contents of the trianglelib docstrings. Separate the
three autodoc directives with sub-titles to make the chapter more organized:

The trianglelib API reference
=============================

.. automodule:: triangles
:members:

The “shape” module

.. automodule:: triangles.shape
:members:

The “utils” module

.. automodule:: triangles.utils
:members:

Add api to the list of chapters in your table of contents in the index.rst file, and then build the
resulting document. Note that you will get errors if Sphinx cannot find the trianglelib Python
module, in which case you should consult the solutions in the Notes on Using Sphinx chapter of
this document.

Once your build is successful, take a look at your output document. It should already contain most
of the information that you need! Compare the output carefully with the corresponding example
bound with this documentation. What changes will you have to learn how to make in order to get
the two documents to match?

For example: where is the text describing how to instantiate Triangle? You will need to add
it manually, because autodoc does not pull that information from your code. So you will need
to take control of that class’s presentation. To take control, switch shape from the using the
automodule:: directive to using the plain old module:: directive, which produces no output
of its own but makes you explicitly provide its contents yourself. This frees you up to build your
own version of Triangle that includes some introductory text before getting to work on its

10

Brandon’s Sphinx Tutorial, Release 2013.0

members:

.. module:: triangles.shape

.. autoclass:: Triangle
:members:

<Describe instantiation here!>

Note that the name of the class Triangle does not have to be prefixed with
triangles.shape. because the module:: directive had already told Sphinx about where to
look for the classes and methods that you describe in this file.

You are getting closer, but the documentation still does not look exactly the same. For one thing,
the first method shown right now is area() since functions and attributes are shown in alphabet-
ical order by default. Try each of the following directives in turn to achieve some other possible
orderings:

:autodoc_member_order: bysource

:autodoc_member_order: groupwise

:members: is_equilateral, is_isosceles, ...

Note that you can also say :exclude-members: followed by the names of methods to leave
out.

At that point your API chapter will begin to strongly resemble the printed one! Here are further
bonus goals in case you finish early:

1. How can you display the attributes a, b, and c as presented in the printed document?

2. The printed chapter describes the triangle __eq__() method by actually showing two tri-
angles compared with the == operator; can you get your version of the document to show
the same thing?

3. If you have not done so already, add in the example doctest that stands just beneath the
instantiation instructions in the printed version of the chapter.

4. Try running make doctests — are your code samples correct? Add some deliberate
errors into the code to see what the output looks like when doctests fail.

5. Create example doctests for a few of the functions in utils by turning off automodule
for the utils module, explicitly autodoc’ing each of its five functions to pull them back
into your documentation, and adding example code beneath each one.

11

Chapter 5

Writing ‘tutorial.rst’

Having written our low-level API documentation, we are now going to turn to the first thing a new
user reads: your tutorial!

The tutorial is short to keep this tutorial from going too long, but it does try to both serve the real
purpose of a tutorial, which is to show users how to get started with your library, and it also should
help you practice reStructuredText.

Remember to add your tutorial document’s filename to the table of contents in your index.rst
file!

While plain names and attributes are simply displayed in a typewriter font, functions()
and methods() should be followed by a pair of parenthesis to make them look right.

Your task is to make the tutorial’s text look as pretty as it does in the printed copy here in this
handout. Here are some bonus goals if you finish early:

1. Do you know whether the sample program really works? Add a deliberate mistake to it and
try running make doctest to see if you really get presented with an error. If no error
appears, then consult the previous Sphinx Quick Reference chapter and try to figure out how
to mark up the code and output so that they get tested.

2. Whenever a module, class, or function is mentioned in the text, you should mark it to create
a cross-reference into the API document you have already written. Try out the following two
styles of cross-reference and see what difference they make in your formatted output:

the :class:`trianglelib.shape.Triangle` class
the :class:`~trianglelib.shape.Triangle` class

3. If you managed to get the quote from Euclid to appear at the top of your tutorial, how might
you make it appear in the index under the entry “Euclid”?

4. In the sentence “Read The trianglelib guide to learn more”, we want the phrase “The tri-
anglelib guide” to become an actual hyperlink to the guide itself. Create a nearly empty
guide.rst document that consists of just an underlined title for right now, add it to your
table of contents, and see whether you can make the cross reference a clickable link.

12

Chapter 6

Writing ‘guide.rst’

Given how much markup you have already learned, you will probably find marking up the Guide
to be a more modest challenge than those you have enjoyed so far. Once you have it marked up
and looking good, here is a list of bonus challenges you might try out:

1. Make all of the references to function, class, and method names turn into real hyperlinks into
the API chapter.

2. In accomplishing the first goal, you probably had to use the package name trianglelib
quite a lot, which involves a quite depressing amount of repetition. While you cannot use the
module:: directive here, since this is not the API documentation, try using the directive
currentmodule:: trianglelib at the top of the Guide and verify that you can then
remove the module name from the beginning of all of your cross references.

3. Are the doctests in the guide really running every time you type make doctest? Try
ending the paragraph that precedes them with : and then with :: and observe the difference
in results.

4. Note the three periods that form an ellipsis "..." in the traceback shown in the guide.
This is a standard established long ago by the Python Standard Library’s doctest module that
lets you avoid including the whole ugly traceback — which you would then have to edit
and correct every time a line number changed in one of your source files! Try removing
the ellipsis to confirm that make doctest indeed fails if it is asked to literally match the
contents of the traceback.

5. I have grown to dislike doctests more and more over the years, most recently because users
cannot easily cut-and-paste doctest code into their own programs without then having to
manually backspace over all of the >>> prompts that get pasted in with the code. Con-
vert the example in the Triangle dimensions section into a testcode:: block and a
testoutput:: block instead, and confirm that the block is getting detected, executed,
and tested when you run make doctest.

6. If you are able to access the Sphinx documentation during the tutorial, look up the math
Sphinx extension and try to figure out how I made the inequality equation so very pretty. As
a super bonus, see if you can replace the inequality with this equivalent expression:

𝑎+ 𝑏

𝑐
> 1

13

Chapter 7

Example: tutorial.rst — The trianglelib tutorial

“There is no royal road to geometry.” — Euclid

This module makes triangle processing fun! The beginner will enjoy how the utils module lets
you get started quickly.

>>> from trianglelib import utils
>>> utils.is_isosceles(5, 5, 7)
True

But fancier programmers can use the Triangle class to create an actual triangle object upon
which they can then perform lots of operations. For example, consider this Python program:

from trianglelib.shape import Triangle
t = Triangle(5, 5, 5)
print 'Equilateral?', t.is_equilateral()
print 'Isosceles?', t.is_isosceles()

Since methods like is_equilateral() return Boolean values, this program will produce the
following output:

Equilateral? True
Isosceles? True

Read Example: guide.rst — The trianglelib guide to learn more!

Warning: This module only handles three-sided polygons; five-sided figures are right out.

14

Chapter 8

Example: guide.rst — The trianglelib guide

Whether you need to test the properties of triangles, or learn their dimensions, trianglelib
does it all!

8.1 Special triangles

There are two special kinds of triangle for which trianglelib offers special support.

Equilateral triangle All three sides are of equal length.

Isosceles triangle Has at least two sides that are of equal length.

These are supported both by simple methods that are available in the trianglelib.utils
module, and also by a pair of methods of the main Triangle class itself.

8.2 Triangle dimensions

The library can compute triangle perimeter, area, and can also compare two triangles for equality.
Note that it does not matter which side you start with, so long as two triangles have the same three
sides in the same order!

>>> from trianglelib.shape import Triangle
>>> t1 = Triangle(3, 4, 5)
>>> t2 = Triangle(4, 5, 3)
>>> t3 = Triangle(3, 4, 6)
>>> print t1 == t2
True
>>> print t1 == t3
False
>>> print t1.area()
6.0
>>> print t1.scale(2.0).area()
24.0

15

Brandon’s Sphinx Tutorial, Release 2013.0

8.3 Valid triangles

Many combinations of three numbers cannot be the sides of a triangle. Even if all three numbers
are positive instead of negative or zero, one of the numbers can still be so large that the shorter two
sides could not actually meet to make a closed figure. If 𝑐 is the longest side, then a triangle is only
possible if:

𝑎+ 𝑏 > 𝑐

While the documentation for each function in the utils module simply specifies a return value
for cases that are not real triangles, the Triangle class is more strict and raises an exception if
your sides lengths are not appropriate:

>>> from trianglelib.shape import Triangle
>>> Triangle(1, 1, 3)
Traceback (most recent call last):

...
ValueError: one side is too long to make a triangle

If you are not sanitizing your user input to verify that the three side lengths they are giving you are
safe, then be prepared to trap this exception and report the error to your user.

8.3. Valid triangles 16

Chapter 9

Example: api.rst — The trianglelib API reference

Routines for working with triangles.

The two modules inside of this package are packed with useful features for the programmer who
needs to support triangles:

shape This module provides a full-fledged Triangle object that can be instantiated and then asked
to provide all sorts of information about its properties.

utils For the programmer in a hurry, this module offers quick functions that take as arguments
the three side lengths of a triangle, and perform a quick computation without the programmer
having to make the extra step of creating an object.

9.1 The “shape” module

class trianglelib.shape.Triangle(a, b, c)
A triangle is a three-sided polygon.

You instantiate a Triangle by providing exactly three lengths a, b, and c. They can either
be intergers or floating-point numbers, and should be listed clockwise around the triangle. If
the three lengths cannot make a valid triangle, then ValueError will be raised instead.

>>> from trianglelib.shape import Triangle
>>> t = Triangle(3, 4, 5)
>>> print t.is_equilateral()
False
>>> print t.area()
6.0

Triangles support the following attributes, operators, and methods.

a
b
c

The three side lengths provided during instantiation.

triangle1 == triangle2
Returns true if the two triangles have sides of the same lengths, in the same order. Note
that it is okay if the two triangles happen to start their list of sides at a different corner;
3,4,5 is the same triangle as 4,5,3 but neither of these are the same triangle as their
mirror image 5,4,3.

17

Brandon’s Sphinx Tutorial, Release 2013.0

area()
Return the area of this triangle.

is_equilateral()
Return whether this triangle is equilateral.

is_isosceles()
Return whether this triangle is isoceles.

is_similar(triangle)
Return whether this triangle is similar to another triangle.

perimeter()
Return the perimeter of this triangle.

scale(factor)
Return a new triangle, factor times the size of this one.

9.2 The “utils” module

Routines to test triangle properties without explicit instantiation.

trianglelib.utils.compute_area(a, b, c)
Return the area of the triangle with side lengths a, b, and c.

If the three lengths provided cannot be the sides of a triangle, then the area 0 is returned.

trianglelib.utils.compute_perimeter(a, b, c)
Return the perimeer of the triangle with side lengths a, b, and c.

If the three lengths provided cannot be the sides of a triangle, then the perimeter 0 is returned.

trianglelib.utils.is_equilateral(a, b, c)
Return whether lengths a, b, and c are an equilateral triangle.

trianglelib.utils.is_isosceles(a, b, c)
Return whether lengths a, b, and c are an isosceles triangle.

trianglelib.utils.is_triangle(a, b, c)
Return whether lengths a, b, c can be the sides of a triangle.

9.2. The “utils” module 18

Python Module Index

t
trianglelib, 17
trianglelib.shape, 17
trianglelib.utils, 18

19

Index

A
a (trianglelib.shape.Triangle attribute), 17
area() (trianglelib.shape.Triangle method), 17

B
b (trianglelib.shape.Triangle attribute), 17

C
c (trianglelib.shape.Triangle attribute), 17
compute_area() (in module trianglelib.utils), 18
compute_perimeter() (in module trian-

glelib.utils), 18

E
equality

triangle, 17
Euclid, 14

I
is_equilateral() (in module trianglelib.utils), 18
is_equilateral() (trianglelib.shape.Triangle

method), 18
is_isosceles() (in module trianglelib.utils), 18
is_isosceles() (trianglelib.shape.Triangle

method), 18
is_similar() (trianglelib.shape.Triangle method),

18
is_triangle() (in module trianglelib.utils), 18

P
perimeter() (trianglelib.shape.Triangle method),

18

S
scale() (trianglelib.shape.Triangle method), 18

T
triangle

equality, 17
Triangle (class in trianglelib.shape), 17
trianglelib (module), 17
trianglelib.shape (module), 17
trianglelib.utils (module), 18

20

	Notes on Using Sphinx
	Starting a Sphinx project
	Sphinx layout
	Hints
	Helping autodoc find your package
	Deployment

	RST Quick Reference
	Sphinx Quick Reference
	Writing ‘api.rst’
	Writing ‘tutorial.rst’
	Writing ‘guide.rst’
	Example: tutorial.rst — The trianglelib tutorial
	Example: guide.rst — The trianglelib guide
	Special triangles
	Triangle dimensions
	Valid triangles

	Example: api.rst — The trianglelib API reference
	The “shape” module
	The “utils” module

	Python Module Index

